
How airplanes fly and ships sail

The discussion here is a supplement of calculations and pictures to Eremenko’s note https:

//www.math.purdue.edu/~eremenko/dvi/airplanes.pdf, which has more information and ref-

erences. See also sections 2.1.1, 3.4.1, and 4.2 of Fisher’s Complex Variables.

Let v(z) be a vector field (representing the wind) which is incompressible (i.e. divergence free,

∂xRe v + ∂y Im v = 0) and irrotational (i.e. curl free, ∂x Im v − ∂y Re v = 0).

This is the nicest kind of fluid flow, with no vortices, turbulence, viscosity, etc. Air can behave

like this under favorable conditions. We are interested in flow around an impermeable object. We

represent the object by D, a domain in the complex plane. Impermeability means that v is defined

on the exterior of D and is tangent to the boundary of D. Thus there is no drag; neglecting drag

makes sense for a sufficiently aerodynamic object, such as an airplane wing or a taut sail nearly

parallel to the wind.

A basic example, which is a building block of the more complicated examples below, is the

circular vector field v(z) = −ic/z̄ with c real, where D is the disk {z : |z| < R} for some R > 0.

See Figure 1.

Figure 1. A circular flow around a circular object: D = {z : |z| < 2}, v(z) =

−ic/z̄, f(z) = ic/z, F (z) = ic log z, with c = 15. The purple circle is the level set

ImF (z) = 17.2. You can adjust the parameters here: https://www.desmos.com/

calculator/sd2pssl2gx.

When v(z) is incompressible and irrotational, the function f defined by f(z) = v(z) is analytic

because f obeys the Cauchy–Riemann equations. The function f is called the complex velocity.

Let F be a complex antiderivative of f , so F ′(z) = f(z). The function F is called the complex

potential. It is significant because for every z, v(z) is tangent to the level set of ImF at z. To
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prove this, notice that if γ′(t) = v(γ(t)) (so γ is a parametrized curve representing the trajectory

of a particle in the wind) then

d

dt
F (γ(t)) = F ′(γ(t))γ′(t) = f(γ(t))v(γ(t)) = |f(γ(t))|2.

Taking the imaginary part of both sides gives d
dt ImF (γ(t)) = 0, so each γ lives on a level set of

ImF and that means that for every z, v(z) is tangent to the level set of ImF at z.

Now we are ready to treat the fundamental example we began above more fully.

The case of a disk. Let D be a disk centered at the origin. Let v∞ > 0 be the background

velocity of the wind (i.e. the velocity far away from D), and c be a real number which will measure

circulation around D. We will check that if

f(z) = v∞ +
ic

z
− v∞R2

z2
, (1)

then v(z) = f(z) is tangent to the circle |z| = R. To check this, note that we are checking that

v(z) is perpendicular to z when |z| = R, i.e. as on page 8 of Fisher that Re zv(z) = Re zf(z) = 0.

So we calculate

Re zf(z) = Re v∞z + ic− v∞R2

z
= v∞(Re z)− v∞R2(Re z)/|z|2,

which is 0 when |z| = R. Another way to check the tangency requirement is to calculate

F (z) = v∞z + ic log z + v∞R2/z, ImF (z) = v∞ Im z + ic log |z| − v∞ Im zR2/|z|2,

and note that if |z| = R then ImF (z) = c log |R| which is independent of z. Thus the circle

|z| = R is contained in the level set ImF (z) = c log |R| and since v is tangent to the level set it

is also tangent to the circle. See Figure 2.

Figure 2. A plot when v∞ = 1, c = 2.5, and R = 2. The purple curve is

ImF (z) = 2 and depicts a flowline going very close to the top of the wing. You

can adjust the parameters here: https://www.desmos.com/calculator/

bxv6wo7upp.
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It turns out that the above are all the possibilities for f . More precisely, given constants v∞ > 0

and R > 0, if 1) f is analytic on {z : |z| > R}, 2) f obeys lim|z|→∞ f(z) = v∞, and 3) v(z) = f(z)

is tangent to |z| = R (i.e. we have Re zf(z) = 0 when |z| = R) then there is a real c such that f

is given by (1). This will be explained below under ‘Uniqueness’.

Other cross sections. We can treat many other cross sections D by using a mapping, or change

of variables, or change of coordinates, to reduce to the case of a circle. The most general result

of this kind is the Riemann mapping theorem.1 See the rest of Chapter 3 of Fisher for more

discussion and various examples and general methods. We will just look at a few examples.

The case of a segment. Let D be given by the segment from Le−iα to −Leiα for some real L

and α. We start with the case L = 2, α = 0, for which we use the mapping z 7→ w(z) defined by

z = w(z) +
1

w(z)
.

This is called the Joukowski mapping. To see that the exterior regions {z : Im z ̸= 0 or |Re z| > 2}
and {w : |w| > 1} are in one-to-one correspondence, note that

Re z = Rew(1 + |w|−2), Im z = Imw(1− |w|−2).

and so if R > 1 then the circle |w| = R is mapped to the ellipse passing through the points

±(R+R−1) and ±i(R−R−1). See Figure 3.

Figure 3. The correspondence z = w + 1
w . The circles |w| = R for various

values of R > 1 on the right, with the respective ellipses on the left. Thus the

exterior regions {z : Im z ̸= 0 or |Re z| > 2} and {w : |w| > 1} are in one-to-

one correspondence. See https://www.desmos.com/calculator/kqeypion7o and

https://www.desmos.com/calculator/1hdmplt0xa.

We can use as a complex potential the function

F (z) = v∞w(z) + ic logw(z) + v∞/w(z) = v∞z + ic log z + · · · , (2)

1Basically, this says that it can be done as long as D is a connected, simply connected, bounded, open set. But

there are some issues to resolve in cases where the boundary of D is not smooth.
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where the first equals sign is the definition of F , and for the second we used w(z) − z → 0 as

z → ∞; the · · · in (2) is a bounded analytic function, defined in the complement of D, with a

series
∑∞

n=0 anz
−n that we do not need to compute.2

For the more general segment from Le−iα to −Leiα, we multiply z by 2eiα/L to map back to

the segment from −2 to 2, and give w the same factor so that we maintain w(z) − z → 0 as

z → ∞. That gives

2eiαz

L
=

2eiαw(z)

L
+

L

2eiαw(z)
, or z = w(z) +

L2

4e2iαw(z)
. (3)

We once again get F of the form (2), but now with w given by (3).

Lift force and Kutta’s principle. For any shape of sail/wing, if f(z) = v∞ + ic
z + · · · (or

equivalently F (z) = v∞z + ic log z + · · · ) then the lift force on the wing can be derived from

Bernoulli’s principle3 and it is

iρ

2

∫
∂D

f(z)2dz = 2πρv∞ci,

where ρ is the density of the fluid. To determine c, we use Kutta’s principle, which says that if

there is a trailing sharp edge, then f(z) = 0 there so that the flow leaves the edge smoothly. In the

case above, the trailing sharp edge is at z = Le−iα, i.e. 2eiαw(z)
L = 1. To compute c, we substitute

w = Le−iα/2 and R = |w| = L/2 into v∞ + ic
w + R2

w2 = 0 and solve for c to get c = v∞L sinα.

Thus the magnitude of the lift is

2πρv2∞L sinα.

Let’s say for instance we have ρ = 1 kg/m2 (the density of air) v∞ = 10m/s (a nice breeze of

about 22 miles per hour) L = 1/2m (the total segment is one meter), sinα = 1/10 (our angle

with the wind is about 5.7◦). That gives 10π Newtons of force or about 15 pounds per square

meter of sail. If the sail is 10 square meters that gives about 150 pounds.

Note that we are neglecting drag, so α must be small for this to be realistic.

The case of a Joukowski airfoil. We obtain a Joukowski airfoil, which is a classic airplane

wing cross section, by using again z = w + 1
w but replacing the circle |w| = 1 with a circle

|w − p| = |1− p|, with p close to the origin: see Figure 4.

Since w(2) = 1, the trailing sharp edge at z = 2 is mapped to the point 1 on the circle. If we

parametrize the circle with w = p+ |1− p|eit, then w = 1 corresponds to eit = (1− p)/|1− p|, so
t = arg(1−p). This corresponds to the case of a tilted segment with α = −t, sinα = Im p/|1−p|,
and L = 2R = 2|1− p|. Thus the magnitude of the lift force is

4πρv2∞ Im p.

2To compute F more explicitly, use the quadratic formula to solve z = w(z)+1/w(z) by writing w(z)2−zw(z)+

1 = 0, w(z) = (z/2)±
√

(z2/4)− 1 = (z/2)(1 +
√

1− 4/z2), where we are using the principal branch of the square

root; to check the branch, note that if z is in [−2, 2], then z2/4 is in [0, 1], 4/z2 is in [1,∞), and so 1 − 4/z2 is in

(−∞, 0], which is where the cut of the principal branch of the square root goes.
3See the first few pages of https://www.math.purdue.edu/~eremenko/dvi/airplanes.pdf.
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Figure 4. Green is the Joukowski airfoil corresponding to the red circle, which is

centered at p = (1+2i)/20 and passes through 1. Blue is a segment which has the

same lift as the green. You can adjust p to get different Joukowski airfoils here:

https://www.desmos.com/calculator/0pgrffm6zf.

Uniqueness. Let’s check that, given constants v∞ and R > 0, with equation (1) we have found

all the functions f such that

i) f is analytic on {z : |z| > R} and continuous on {z : |z| ≥ R},
ii) lim|z|→∞ f(z) = v∞, and

iii) Re zf(z) = 0 when |z| = R.

This shows that the discussion of ‘The case of a circle’ above covers all examples with D =

{z : |z| < R}.
Start with an arbitrary such f . Then on {z : |z| > R}, f has a Laurent series expansion

f(z) = v∞ +

∞∑
n=1

anz
−n.

We now consider the difference

g(z) = f(z)−
(
v∞ +

ic

z
− v∞R2

z2

)
,

with c = Im a1. We will use a carefully chosen transformation to convert g into a function h such

that

iv) h is analytic on {z : |z| < 1/R} and continuous on {z : |z| ≤ 1/R}, and
v) Reh(z) = 0 when |z| = 1/R.

Then by the maximum principle (see the section below) it will follow that Reh(z) = 0 on {z : |z| ≤
1/R}. By the Cauchy–Riemann equations, Imh(z) = 0 on {z : |z| ≤ 1/R} as well, from which it

will follow that g(z) = 0 on {z : |z| ≥ R}.

https://www.desmos.com/calculator/0pgrffm6zf
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To obtain h, note that

g(z) =
∞∑
n=1

bnz
−n,

with b1 real. Moreover, by direct calculation and using Re zf(z) = 0, we have Re zg(z) = 0 when

|z| = R. Now let

h(z) = g(1/z)/z =
∞∑
n=1

bnz
n−1.

This h has properties iv) and v), so h(z) = 0 on {z : |z| ≤ 1/R} and g(z) = 0 on {z : |z| ≥ R}.

Maximum principle. The maximum principle states that if h is analytic on {z : |z| < 1/R}
and continuous on {z : |z| ≤ 1/R}, then Reh attains its maximum and minimum values on

{z : |z| = 1/R}.
This follows from the fact that, by the Cauchy integral formula,

h(p) =
1

2πi

∫
|z−p|=r

h(z)dz

z − p
=

1

2π

∫ 2π

0
h(p+ reiθ)dθ, (4)

when |p| < 1/R and r < 1/R − |p|; equation (4) is called the mean value property because the

value of h at p is the average of the values of h on any circle centered at p, as long as the circle

fits within the zone of analyticity |z| < 1/R.

Let’s show that the mean value property (4) implies the maximum principle. To do this, we

show that if Reh attains a maximum at some p in {z : |z| < 1/R} then Reh is constant, and hence

it attains the same maximum on {z : |z| = 1/R} as well. Note that Reh(p+reiθ) = Reh(p) for all

r < 1/R−|p| and all θ because we have Reh(p+reiθ) ≤ Reh(p) by the fact that Reh(p) is maximal

and if we ever had Reh(p + reiθ) < Reh(p) we would have 1
2π

∫ 2π
0 Reh(p + reiθ)dθ < Reh(p),

violating (4). This shows that Reh is constant on {z : |z − p| < 1/R − |p|. If we had p = 0 then

this reduces to Reh is constant on {z : |z| < 1/R}. If p ̸= 0, then repeat the argument with p

replaced by p′, where p′ is closer to 0 than p. Repeating the argument enough times proves that

Reh is constant on {z : |z| < 1/R}. Applying the same result with −h in place of h proves that

Reh(p) ≥ 0 for all p.
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